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Figure 5: Tasks

B Shape Estimation and Tracking Evaluation

A B

Figure 6: Shape estimation and trajectory tracking performance evaluation. We provide each
of the shape estimation models and controllers with kinesthetically deformed shape trajectories. A :
Shape estimation model comparisons with real-world ground-truth data (red points). B : Shape
tracking comparisons with the real-world ground-truth data (red points), references shapes (red),
and achieved shapes (blue).

C Details on Sensor Model

We assume the embedded sensors are perfectly incompressible and isotropic, a common assumption
in soft body mechanics for highly elastic rubber, particularly when infused with particle fillers [60].
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These fillers, like those used in the off-the-shelf conductive rubbers embedded in MOE, enable the
sensors to exhibit changes in resistivity when stretched. The sensors have a cylindrical shape, so
we model the relationship between the cross-sectional area and the strain in the axial direction for
sensor i at time t ≥ 0 with the incompressibility assumption as:

Li,0Ai,0 = Li,tAi,t, (3)

where Li,0 and Ai,0 are the initial length and cross-sectional area; Li,t and Ai,t are the corresponding
values at time t.

For conductive materials, resistance generally has a linear relationship with strain. The observed
resistance for the sensor indexed at i is given by:

Ri,t = ρi
Li,t

Ai,t
, (4)

where ρi is the conductivity factor, assumed to be constant for sensor i across time. Relating Equa-
tion 3 and Equation 4, we derive:  

Ri,t

Ri,0
− 1 =

Li,t − Li,0

Li,0
. (5)

This relationship is independent of the material conductivity ρi, enabling a direct mapping from
observed resistance to strain. However, in real-world applications, fabrication imperfections, such
as connecting wires to the DAQ boards, can introduce errors into the initial length of the embedded
sensors. These imperfections result in a deviation between the real sensor lengths (LR

i,0, LR
i,t) and

simulated sensor lengths (LS
i,0, LS

i,t):

LR
i,0 = LS

i,0 + ϵi, LR
i,t = LS

i,t + ϵi,

where ϵi is a constant error specific to each sensor i. This error propagates to the strain relationship
as:

LR
i,t − LR

i,0

LR
i,0

=
1

1 + ϵi
LS

i,0

·
LS
i,t − LS

i,0

LS
i,0

. (6)

The constant factor 1
1+

ϵi
LS
i,0

can be denoted as κi ∈ κ, representing the constant correction factor for

sensor i. Substituting this into Equation 5, we obtain: 
Ri,t

Ri,0
− 1 = κi

LS
i,t − LS

i,0

LS
i,0

, (7)

where the observed resistances Ri,t, Ri,0 are measured with the DAQ setup. For the n embedded
sensors, aligning the simulated and observed distributions involves optimizing the constant correc-
tion parameters κ0, κ1, . . . , κn−1.

D Baselines

For shape estimation, we compare with analytical and learning-based baselines:

Constant curvature model [51, 43]. Constant curvature model is a common representation for the
continuum deformation behavior of soft robot that parametrizes the shape with a single curvature
curve [61]. Typically, the independent parameters of the state of the robot are defined by rcurve and
θcurve. Assuming a constant length, Lcurve of the robot, we get the constraint:

Lcurve = rcurveθcurve.

In typical applications, additional term ϕcurve is introduced to represent the plane of bending [48].
We implemented this simplified representation for soft robot shape using the proposed strain model
as outlined in Section 4.3 and fitting rcurve and θcurve to the observed strains in each side of the
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Algorithm 1 Domain Alignment Optimization

Input: Shape predictor fθ, transformations {T}, observations Pobs, initial resistances R0

Initialize θ = {κ ∈ R24, ϕ ∈ R3} ← 0
Initialize CMA-ES optimizer O(θ)
while not converged do

Sample candidates {θ} ∼ O
for each θ do

∆R←
√
R/R0 − 1 ▷ Strain model for resistances

Apply correction: S ← ∆R · κI[∆R<0]

V← fθ(S) ▷ Predict vertices
Ppred ←

⋃
V · T · [Ry(ϕ)|0] ▷ Combine

ℓ← LUCD(Pobs,Ppred) ▷ Compute error
end for
Update O with candidates and losses

end while
return θ∗ with minimum loss

curve. We transformed the cross-section boundary to the curve during the evaluation and measured
the chamfer distance to the reference.

DeepSoRo [52]. DeepSoRo architecture deploys a FoldingNet [50] decoder conditioned on visual
observations to predict the current shape of a deformable body. Crucially, it is trained with chamfer
distance and originally trained on partial real-world shape observations, resulting in partial point
cloud reconstruction outputs without frame-to-frame correspondences. Additionally, the model di-
rectly outputs the point cloud positions in contrast to KineSoft, which learns a deformation field
and produces vertex displacement with frame-to-frame correspondences. We augment DeepSoRo
for evaluation by training the model on KineSoft’s simulated training data and using the proposed
domain alignment process.

Shape-tracking Baselines. For shape tracking and task performance evaluation we provide the
results against the following: Strain Policy: Strain policy, based on prior works that directly use
sensor readings without intermediate representations for learning manipulation policies [53], uses
raw sensor measurements instead of reconstructed shapes. For shape tracking evaluation, we mod-
ified the low-level controller from Section 4.4 to track reference sensor readings directly through
proportional tendon actuation. For task performance evaluation, we trained a diffusion policy using
the same 50 demonstrations we use for KineSoft, but with raw strain signals and wrist-mounted
camera observations as input states.

E Data Generation and Shape Estimation Model Training

To train the model, we generate a large dataset of deformed meshes using SOFA (Simulation Open
Framework Architecture) [62]. We simulate a tetrahedral finite-element mesh of the MOE finger
with a Neo-Hookean hyperelastic material model parameterized by elastic material properties that
are randomized at runtime.

We model the tendon actuation with massless, inextensible cables running through a series of fixed
points within the finger body. We discretize each tendon path to segments defined by 3D attachment
points embedded in the tetrahedral mesh. The cable constraint applies forces to these points to
maintain constant length while allowing sliding, effectively simulating the mechanical behavior of
Bowden cable transmission. The soft body scene is solved with an implicit Euler time integration
scheme and uses a conjugate gradient solver for the system matrices. We generate training data by
randomly sampling tendon actuation commands within the feasible range and recording the resulting
deformed vertex positions and embedded sensor strains. To simulate rich deformation behaviors
including contact-like effects, we apply random external forces to the finger surface. These forces
are randomly applied over time with sufficiently large radii to ensure smooth deformations that
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mimic natural contact interactions, without requiring explicit and difficult-to-model contacts in the
scene.

We train the model using a mean squared error (MSE) loss on vertex displacements:

L =
1

3N

3∑
j=1

N∑
i=1

∥∆vj,i −∆v∗
j,i∥2,

where ∆v∗
j,i represents the ground-truth displacement for vertex i of mesh finger j. This choice of

loss function provides strong supervision by enforcing explicit vertex-wise correspondence between
predicted and ground-truth meshes. Because we leverage simulated data to train the model, we can
exploit the vertex-level correspondences in the meshes. We contrast this to prior works that relied on
chamfer distance loss over real-world partial observations [52], MSE loss ensures that each vertex
learns to track its specific local deformation patterns, enabling precise reconstruction of the full
finger shape.

F Experiment Setup

Projector (Only Used in Calibration)

Wrist-mounted Stereo RGB-D Camera

Sensor DAQ Board

MOE End-effector

Calibration Marker

6 Degree-of-freedom Arm

A B

Figure 7: Simulation and real-world setup. A : Simulated robot workspace and sample of simu-
lated strain signals. B : Real-world robot setup with the projected patterns to improve ground-truth
shape observations for evaluation and calibration.
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G Failiure Cases

We conducted stress testing through 1,000 continuous servo cycles over 14 hours, observing max-
imum signal drift of 8.3% in a sensor (Fig. ??A) that resulted in 0.062 ± 0.0056 mm mean vertex
error. After rest, the signals returned to baseline levels and our original manipulation experiments
were conducted over several weeks without recalibration. We appreciate the reviewers highlighting
this important concern and will update the manuscript with these discussions on long-term sensor
reliability.

KineSoft failures occurred mainly when fingers lost or made unintended contact during manipulation
transitions—a limitation of kinematic imitation without tactile sensing, which we will highlight in
the limitations section. Baseline strain policies failed significantly more, as demonstration strain pat-
terns often cannot be directly reproduced through tendon actuation. The results support KineSoft’s
approach of using shape as an intermediate representation between demonstration and execution
modes.
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failure

Figure 8: Left: Sensor signal degradation after 1000 cycles. Right: Failiure cases for manipulation
tasks.
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H Sensor Signals

Finger 1 Finger 2 Finger 3

Finger 3

Finger 2

Finger 1

Shape Estimation

Figure 9: Sensor signals and corresponding shape estimation
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